On the Ext Groups between Weyl Modules for Gl N
نویسنده
چکیده
This paper studies extension groups between certain Weyl modules for the algebraic group GLn over the integers. Main results include: (1) A complete determination of Ext groups between Weyl modules whose highest weights differ by a single root and (2) Determination of Ext between an exterior power of the defining representation and any Weyl module. The significance of these results for modular representation theory of GLn is discussed in several Remarks. Notably the first result leads to a calculation of Ext groups between neighboring Weyl modules for GLn and also recovers the GLn case of a recent result of Andersen. Some generalities about Ext groups between Weyl modules and a brief overview of known results about these groups are also included.
منابع مشابه
A homological interpretation of Jantzen’s sum formula
For a split reductive algebraic group, this paper observes a homological interpretation for Weyl module multiplicities in Jantzen’s sum formula. This interpretation involves an Euler characteristic χ built from Ext groups between integral Weyl modules. The new interpretation makes transparent For GLn (and conceivable for other classical groups) a certain invariance of Jantzen’s sum formula unde...
متن کاملOn the Good Filtration Dimension of Weyl Modules for a Linear Algebraic Group
In this paper we consider the notion of the Weyl filtration dimension and good filtration dimension of modules for a linear algebraic group. These concepts were first introduced by Friedlander and Parshall [15] and may be considered a variation of the notion of projective dimension and injective dimension respectively. (The precise definition is given in 2.2.) The Weyl filtration dimension of a...
متن کاملExtension functors of local cohomology modules
Let $R$ be a commutative Noetherian ring with non-zero identity, $fa$ an ideal of $R$, and $X$ an $R$--module. Here, for fixed integers $s, t$ and a finite $fa$--torsion $R$--module $N$, we first study the membership of $Ext^{s+t}_{R}(N, X)$ and $Ext^{s}_{R}(N, H^{t}_{fa}(X))$ in the Serre subcategories of the category of $R$--modules. Then, we present some conditions which ensure the exi...
متن کاملRepresentations of Two-parameter Quantum Groups and Schur-weyl Duality
We determine the finite-dimensional simple modules for two-parameter quantum groups corresponding to the general linear and special linear Lie algebras gl n and sln, and give a complete reducibility result. These quantum groups have a natural n-dimensional module V . We prove an analogue of Schur-Weyl duality in this setting: the centralizer algebra of the quantum group action on the k-fold ten...
متن کاملSchur-Weyl reciprocity between the quantum superalgebra and the Iwahori-Hecke algebra
In the representation theory, the classification and the construction of the irreducible representations are essential themes. In the first half of the twentieth century, I. Schur[11] introduced a prominent method to obtain the finite dimensional irreducible representations of the general linear group GL(n,C), or equivalently of its Lie algebra gl(n,C), which we call Schur-Weyl reciprocity at p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005